Misalnya pada gambar di atas, vektor terdiri dari tiga titik koordinat, yaitu x = 3, y = 4, dan z = 1, sehingga: Panjang vektor dalam ruang juga dapat ditentukan dengan cara yang sama, yaitu: Contoh: Diketahui vektor , tentukan ! Pembahasan: satuan panjang. Oke, materi mengenai konsep dasar vektor cukup sampai sini, nih. Untuk pembahasan
Besaranberikut yang termasuk besaran vektor adalah kecepatan. Pembahasan dan Penjelasan. Jawaban A. waktu menurut saya kurang tepat, karena kalau dibaca dari pertanyaanya jawaban ini tidak nyambung sama sekali. Jawaban B. jarak menurut saya ini 100% salah, karena sudah melenceng jauh dari apa yang ditanyakan.
Semuavektor berikut adalah sama (equivalent). Tentukan bentuk komponen vektor dari segmen garis berarah dengan titik awal, P(3,2,-2) dan titik akhir, Q(7,5,-3). terhadap arah vektor satuan dari vektor lainnya (v) ketika kedua vektor tersebut diletakan pada titik awal yang sama. Perkalian skalar dari dua vektor menghasilkan scalar. u.
Setelahdiperoleh data latih dan data uji dalam kondisi data yang seimbang untuk masing-masing kelasnya (kelas gizi lebih, gizi baik, gizi rentan, dan gizi
Tentukanvektor satuan dari vektor - vektor berikut! Vektor adalah besaran yang memiliki nilai dan arah. Penulisannya bisa ditulis dalam 2 huruf kapital atau 1 huruf kecil. Penulisan vektor bisa dalam bentuk Baris: u = (u₁, u₂) Kolom: u = Basis: u = u₁i + u₂j Besar atau panjang vektor u: |u| = √(u₁² + u₂²)
Vektoryang saling tegak lurus memenuhi persamaan: a · b = 0, sehingga nilai x pada vektor b dapat dicari dengan cara berikut. Jadi, nilai x dari vektor b adalah -7. Jawaban: B. Contoh 2 - Soal Vektor yang Saling Tegak Lurus. Diketahui vektor a = i + 2j - xk, b = 3i - 2j + k, dan c = 2i + j + 2k.
Vektormerupakan sebuah besaran yang memiliki arah. Vektor digambarkan sebagai panah dengan yang menunjukan arah vektor dan panjang garisnya disebut besar vektor. Dalam penulisannya, jika vektor berawal dari titik A dan berakhir di titik B bisa ditulis dengan sebuah huruf kecil yang diatasnya ada tanda garis/ panah seperti . atau . atau juga:
cLhXo5. - Dilansir dari Encyclopedia Britannica, vektor merupakan besaran fisika yang memiliki besar dan arah. Resultan dari suatu vektor merupakan penjumlahan dari dua atau lebih vektor. Mari simak contoh soal dalam menentukan resultan vektor pada pembahasan resultan dari ketiga vektor di bawah ini. FAUZIYYAH Ilustrasi vektor F1, F2, dan F3 pada koordinat kartesius Langkah pertama adalah menentukan besar vektor pada proyeksi sumbu x dan sumbu y. F1 merupakan vektor dengan sudutnya diketahui berada pada referensi sumbu x. Sehingga kita dapat langsung memasukkannya ke dalam persamaan. Sementara itu vektor F1 termasuk pada kuadran 1, dimana sin dan cos bernilai positif. Baca juga Vektor Posisi, Kecepatan, dan Percepatan FAUZIYYAH Menentukan besar proyeksi vektor F1 pada sumbu x dan sumbu y F2 merupakan vektor dengan sudutnya diketahui berada pada referensi sumbu y. Sementara itu vektor F2 termasuk pada kuadran 2, dimana sin bernilai positif dan cos bernilai negatif. Untuk menentukan besar vektor F2, terdapat 2 cara yang dapat dipilih.
Blog Koma - Seperti yang telah kita bahas pada materi "pengertian vektor dan penulisannya", vektor memiliki besar panjangnya dan arah. Hal ini sangat berkaitan erat dengan materi kesamaan dua vektor yang akan kita bahas pada artikel kali ini yaitu materi Kesamaan Dua Vektor, Vektor Sejajar dan Segaris. Hal pertama yang akan kita bahas adalah pengertian kesamaan dua vektor, yang dilanjutkan dengan pembahasan vektor-vektor yang sejajar dan terakhir adalah titik-titik yang segaris kolinear. Untuk memudahkan mempelajari materi Kesamaan Dua Vektor, Vektor Sejajar dan Segaris, teman-teman harus menguasai beberapa materi vektor sebelumnya seperti "pengertian vektor", "panjang vektor" dan "vektor basis". Untuk sub-materi beberapa vektor yang sejajar dan sub-materi titik yang segaris kolinear sebenarnya memeiliki konsep yang sama yaitu menitikberatkan pada konsep kesejajaran pada vektor. Berikut penjelasan masing-masing secara lebih lengkap. Kesamaan Dua Vektor Pengertian kesamaan dua buah vektor atau lebih dapar kita tinjau dari dua hal yaitu $\spadesuit \, $ Secara Geometri Dua buah vektor dikatakan sama jika kedua vektor memiliki besar panjangnya dan arah yang sama. Misalkan vektor $ \vec{AB} $ sama dengan vektor $ \vec{CD} $ atau kita tulis $ \vec{AB} = \vec{CD} $ seperti ilustrasi berikut ini. $ \clubsuit \, $ Secara Aljabar Dua buah vektor dikatakan sama jika unsur-unsur yang bersesuaian besarnya sama nilainya sama. *. Vektor di R$^2 $ Misalkan $ \vec{a} = a_1, \, a_2 $ dan $ \vec{b} = b_1, \, b_2 $. Jika $ \vec{a} = \vec{b} $ , maka $ a_1 = b_1 $ dan $ a_2 = b_2 $ *. Vektor di R$^3$ Misalkan $ \vec{a} = a_1, \, a_2, \, a_3 $ dan $ \vec{b} = b_1, \, b_2, \, b_3 $. Jika $ \vec{a} = \vec{b} $ , maka $ a_1 = b_1 $, $ a_2 = b_2 $ dan $ a_3 = b_ 3 $ Catatan Secara Geometri, dua vektor meskipun tidak berimpit asalkan memiliki arah dan panjang yang sama, maka kita sebut kedua vektor tersebut sama. Contoh soal Kesamaan Dua Vektor 1. DIketahui titik $ A2,-1,1 $ , $ B1,0,3 $ , $ Cp, 1, 3 $ dan $ D-1, q, r $. Jika $ \vec{AB} = \vec{CD} $ , maka tentukan a. Koordinat titik C dan D , b. Nilai $ p + q + r $ Penyelesaian a. Koordinat titik C dan D , $ \begin{align} \vec{AB}& = \vec{CD} \\ B - A & = D - C \\ \left \begin{matrix} 1 \\ 0 \\ 3 \end{matrix} \right - \left \begin{matrix} 2 \\ -1 \\ 1 \end{matrix} \right & = \left \begin{matrix} -1 \\ q \\ r \end{matrix} \right - \left \begin{matrix} p \\ 1 \\ 3 \end{matrix} \right \\ \left \begin{matrix} 1 - 2 \\ 0 - -1 \\ 3 - 1 \end{matrix} \right & = \left \begin{matrix} -1 - p \\ q - 1 \\ r - 3 \end{matrix} \right \\ \left \begin{matrix} -1 \\ 1 \\ 2 \end{matrix} \right & = \left \begin{matrix} -1 - p \\ q - 1 \\ r - 3 \end{matrix} \right \end{align} $ Dari kesamaan dua vektor, maka kita peroleh persamaan $ -1 = -1 - p \rightarrow p = 0 $ $ 1 = q - 1 \rightarrow q = 2 $ $ 2 = r - 3 \rightarrow r = 5 $ Sehingga koordinat titik C dan D adalah $ Cp,1,3 = 0,1,3 $ dan $ D-1,q,r = -1,2,5 $. b. Nilai $ p + q + r $ $ p + q + r = 0 + 2 + 5 = 7 $ Jadi, nilai $ p + q + r = 7 $. 2. Perhatikan gambar jajar genjang berikut ini, Dari gambar tersebut, tentukan a. Panjang vektor $ \vec{SR} $ dan vektor $ \vec{PS} $ , b. Koordinat titik S. Penyelesaian a. Panjang vektor $ \vec{SR} $ dan vektor $ \vec{PS} $ , *. Panjang vektor $ \vec{SR} $ , Perhatikan gambar, karena PQRS adalah jajar genjang, maka panjang SR = panjang PQ. Dilain pihak, vektor $ \vec{SR} $ memiliki arah yang sama dengan vektor $ \vec{PQ} $ , sehingga vektor $ \vec{SR} = \vec{PQ} $. Panjang vektor $ \vec{SR} $ sama dengan panjang vektor $ \vec{PQ} $. $ \vec{SR} = \vec{PQ} = \sqrt{3-1^2+1-2^2+-2-0^2} $ $ = \sqrt{4 + 9 + 4} =\sqrt{17} $ *. Panjang vektor $ \vec{PS} $ , Dengan alasan yang sama seperti vektor $ \vec{SR} $, maka $ \vec{PS} = \vec{QR} $ , $ \vec{PS} = \vec{QR} = \sqrt{5-3^2+7-1^2+1-2^2} $ $ = \sqrt{4 + 36 + 9} = \sqrt{49} = 7 $ b. Koordinat titik S. Pada bagian a di atas, kita peroleh $ \vec{SR} = \vec{PQ} $ dan $ \vec{PS} = \vec{QR} $, sehingga koordinat titik S bisa kita tentukan $ \begin{align} \vec{SR} & = \vec{PQ} \\ R - S & = Q - P \\ S & = R - Q + P \\ & = \left \begin{matrix} 5 \\ 7 \\ 1 \end{matrix} \right - \left \begin{matrix} 3 \\ 1 \\ -2 \end{matrix} \right + \left \begin{matrix} 1 \\ -2 \\ 0 \end{matrix} \right \\ & = \left \begin{matrix} 5- 3 + 1 \\ 7 - 1 + -2 \\ 1 - -2 + 0 \end{matrix} \right \\ & = \left \begin{matrix} 3 \\ 4 \\ 3 \end{matrix} \right \end{align} $ Jadi, koordinat titik S adalah $ S3, 4, 3 $. Kita juga bisa menggunakan kesamaan $ \vec{PS} = \vec{QR} $, juga memberikan hasil yang sama yaitu koordinat titik S adalah $ S3, 4, 3 $. 3. Diketahui vektor $ \vec{u} = \left \begin{matrix} \frac{1}{2}m - 1 \\ -5 \end{matrix} \right $ dan $ \vec{v} = \left \begin{matrix} -2 \\ 3-2n \end{matrix} \right $. Jika $ \vec{u} = \vec{v} $ , maka tentukan a. Nilai $ m - n $! b. vektor $ \vec{u} $ dan $ \vec{v} $ c. nilai $ \vec{u} + \vec{v} $ d. nilai $ \vec{u} + \vec{v} $ Penyelesaian a. Nilai $ m - n $! $ \begin{align} \vec{u} & = \vec{v} \\ \left \begin{matrix} \frac{1}{2}m - 1 \\ -5 \end{matrix} \right & = \left \begin{matrix} -2 \\ 3-2n \end{matrix} \right \end{align} $ terbentuk persamaan $ \frac{1}{2}m - 1 = -2 \rightarrow \frac{1}{2}m = -1 \rightarrow m = -2 $ $ -5 = 3 - 2n \rightarrow 2n = 8 \rightarrow n = 4 $. Sehingga nilai $ m - n = -2 - 4 = -6 $ b. vektor $ \vec{u} $ dan $ \vec{v} $ Karena $ \vec{u} = \vec{v} $ , maka kita gunakan salah satu saja. $ \vec{u} = \vec{v} = \left \begin{matrix} -2 \\ 3-2n \end{matrix} \right = \left \begin{matrix} -2 \\ -5 \end{matrix} \right $ c. nilai $ \vec{u} + \vec{v} $ Karena $ \vec{u} = \vec{v} $ , maka panjang kedua vektor juga sama yaitu $\vec{u} + \vec{v} = 2\vec{u}=2\sqrt{-2^2 + -5^2} = 2\sqrt{4 + 25} = 2\sqrt{29} $. d. nilai $ \vec{u} + \vec{v} $ Karena $ \vec{u} = \vec{v} $ , maka $ \vec{u} + \vec{v} = 2\vec{u} = 2 \left \begin{matrix} -2 \\ -5 \end{matrix} \right = \left \begin{matrix} -4 \\ -10 \end{matrix} \right $ Sehingga $ \begin{align} \vec{u} + \vec{v} & = \sqrt{-4^2 + -10^2} \\ & = \sqrt{16 + 100} = \sqrt{116} \\ & = \sqrt{4 \times 29} = 2\sqrt{29} \end{align} $ Jadi, panjang $ \vec{u} + \vec{v} = 2\sqrt{29} $. Vektor-vektor yang sejajar Dua vektor atau lebih sejajar memiliki kemiringan vektor yang sama yaitu searah atau berlawanan arah antara vektor-vektor tersebut dimana panjang-panjang vektornya tidak harus sama. Dengan kata lain, jika dua vektor sejajar maka salah satu vektor adalah kelipatan dari vektor yang lainnya. Perhatikan ilustrasi berikut ini. $ \spadesuit \, $ Definisi dua vektor sejajar Vektor $ \vec{p} $ sejajar vektor $ \vec{q} $ ditulis $ \vec{p} // \vec{q} $ apabila $ \vec{p} = k\vec{q} \, $ , dengan $ k $ skalar , $ k \in R $. $ k $ kita sebut sebagai pengali atau kelipatan vektor yang lainnya. Ada beberapa kemungkinan nilai $ k $ 1. Jika $ k > 0 $ , maka $ \vec{p} $ searah dengan $ \vec{q} $ , 2. Jika $ k 0 $. *. Menentukan nilai $ x $ dengan syarat $ k > 0 $ dan menyelesaikan pertidaksamaannya. $ \begin{align} k & > 0 \\ x^2 - 2x - 15 & > 0 \\ x + 3x - 5 & > 0 \\ x = -3 \vee x & = 5 \end{align} $ Garis bilangannya Solusinya $ x 5 $. Jadi, kedua vektor akan searah jika nilai $ x $ memenuhi $ x 5 $. c. Jika vektor $ \vec{p} $ dan $ \vec{q} $ sejajar, tentukan nilai $ x $ agar kedua vektor berlawan arah Untuk solusi bagian c ini adalah kebalikan dari solusi bagian b yaitu syarat berlawanan arah adalah $ k < 0 $. Jadi, kedua vektor akan berlawanan arah jika nilai $ x $ memenuhi $ -3 < x < 5 $. Titik-titik yang segaris Kolinear Jika diketahui beberapa titik segaris lebih dari dua titik, maka dapat kita buat vektor dari masing-masing dua titik yang segaris kolinear juga. Karena vektor-vektor yang terbentuk segaris, maka otomatis semua vektor yang terbentuk adalah sejajar, sehingga langkah selanjutnya bisa kita terapkan konsep vektor-vektor yang sejajar seperti teori di atas sebelumnya. Misalkan terdapat titik A, B, dan C segaris, maka bisa kita bentuk vektor $ \vec{AB} $ , $ \vec{BA} $ , $ \vec{AC} $, $ \vec{CA} $ , $ \vec{BC} $ dan $ \vec{CB} $ yang segaris juga mengakibatkan sejajar dimana salah satu vektor adalah kelipatan dari vektor yang lainnya. Artinya dapat juga kita tulis $ \vec{AB} = k\vec{BC} $ atau $ \vec{AB} = n\vec{AC} $ dan lainnya asalkan vektornya melibatkan lebih dari dua titik. Contoh soal beberapa titik segaris kolinear 10. Diketahui tiga titik yaitu $ A -3,-8,-3 $ , $ B1, -2, -1 $ dan $ C3,1,0 $. Coba selidiki, apakah titik A, B, dan C terletak pada satu garis segaris/kolinear? Pembahasan *. Untuk menentukan segaris atau tidak, cukup kita bentuk dua vektor dari titik-titik yang ada dan kita cek apakah salah satu vektor adalah kelipatan dari vektor yang lain, jika ya maka ketiga titik segaris dan berlaku sebaliknya. *. Misal kita bentu vektor $ \vec{AB} = B - A = 1 - -3, -2 - -8, -1-3 = 4, 6, 2 $ $ \vec{BC} = C - B = 3 - 1, 1 - -2 , 0 - -1 = 2, 3, 1 $ *. Terlihat bahwa $ \vec{AB} $ kelipatan dari vektor $ \vec{BC} $ yaitu $ \vec{AB} = 2\vec{BC} $. Artinya dapa kita simpulkan bahwa ketiga titik A, B, dan C segaris kolinear. 11. Agar titik $ A2,y,-8 $ , $ Bx, 3y,-2 $ , dan $ C 5, 4y, z $ terletak pada satu garis lurus, maka nilai $ x + z = ....$ ! Penyelesaian *. Agar ketiga titik segariskolinear , maka dua vektor yang terbentuk dari ketiga titik tersebut harus saling berkelipatan. Misalkan kita bentuk vektor $ \vec{AB} $ dan vektor $ \vec{BC} $, kita peroleh hubungan $ \begin{align} \vec{AB} & = k \vec{BC} \\ B - A & = k C - B \\ \left \begin{matrix} x \\ 3y \\ -2 \end{matrix} \right - \left \begin{matrix} 2 \\ y \\ -8 \end{matrix} \right & = k \left[ \left \begin{matrix} 5 \\ 4y \\ z \end{matrix} \right - \left \begin{matrix} x \\ 3y \\ -2 \end{matrix} \right \right] \\ \left \begin{matrix} x - 2 \\ 2y \\ 6 \end{matrix} \right & = k \left \begin{matrix} 5 - x \\ y \\ z + 2 \end{matrix} \right \\ \left \begin{matrix} x - 2 \\ 2y \\ 6 \end{matrix} \right & = \left \begin{matrix} 5 - xk \\ ky \\ z + 2k \end{matrix} \right \end{align} $ Dari kesamaan dua vektor kita peroleh $ 2y = ky \rightarrow k = 2 $ $ x - 2 = 5 - xk \rightarrow x - 2 = 5 - x.2 \rightarrow x = 4 $ $ 6 = z + 2k \rightarrow 6 = z + 2. 2 \rightarrow z = 1 $ Sehingga nilai $ x + z = 4 + 1 = 5 $. Jadi, nilai $ x + z = 5 $. Demikian pembahasan materi Kesamaan Dua Vektor, Vektor Sejajar dan Segaris dan contoh-contohnya. Silahkan juga baca materi lain yang berkaitan dengan "Penjumlahan dan Pengurangan pada Vektor".
Subscribe!Klik di sini untuk berlangganan artikel melalui Telegram. Merentang ruang vektor, adalah syarat bagi himpunan bebas linear untuk menjadi basis ruang vektor. Tapi, apa sih yang disebut merentang? Sebelum menjawab pertanyaan ini, mari perhatikan daftar isi berikut. Definisi Merentang Definisi Misalkan adalah subset tak kosong dari suatu ruang vektor dan adalah himpunan yang memuat semua kombinasi linear yang mungkin dari vektor-vektor dalam . Maka disebut subruang dari yang direntang oleh . Dengan kata lain, himpunan merentang . Subruang ini dituliskan dengan notasi Berdasarkan definisi, himpunan dikatakan merentang ruang vektor , jika Dengan kata lain, setiap vektor dalam dapat dinyatakan sebagai kombinasi linear dari vektor-vektor dalam . Dua himpunan yang berbeda dapat merentang subruang yang sama. Hal ini termuat dalam teorema berikut. Teorema 1 Misalkan dan adalah subset tak kosong dari suatu ruang vektor . Maka jika dan hanya jika setiap vektor dalam dapat dinyatakan sebagai kombinasi linear dari vektor-vektor dalam , begitupun sebaliknya. Soal dan PembahasanNomor 1Misalkan adalah ruang vektor, dan himpunan merentang . Jika , maka buktikan bahwa himpunan juga merentang .PembahasanMisalkan $\textbf{q} \in V$. Karena himpunan $S$ merentang $V$, maka terdapat skalar $k_1,k_2,\ldots,k_n$ sedemikian sehingga $$\textbf{q} = k_1\textbf{u}_1+k_2\textbf{u}_2+\ldots+k_n\textbf{u}_n$$ Persamaan ini dapat ditulis sebagai $$\textbf{q} = 0\textbf{w} + k_1\textbf{u}_1+k_2\textbf{u}_2+\ldots+k_n\textbf{u}_n$$ Artinya, $\textbf{q}$ adalah kombinasi linear dari vektor-vektor $\textbf{w},\textbf{u}_1,\textbf{u}_2,\ldots,\textbf{u}_n$. Dengan demikian, himpunan $S'$ juga merentang $V$. 2Misalkan adalah ruang vektor dan himpunan merentang . Jika adalah kombinasi linear dari vektor-vektor lainnya, maka buktikan bahwa himpunan juga merentang .PembahasanMisalkan $\textbf{q} \in V$ dan $\textbf{u}_1$ adalah kombinasi linear dari vektor-vektor lain dalam $S$, yaitu $$\textbf{u}_1=l_2\textbf{u}_2+l_3\textbf{u}_3+\ldots+l_n\textbf{u}_n$$ untuk suatu skalar $l_2,l_3,\ldots,l_n$. Karena himpunan $S$ merentang $V$, maka terdapat skalar $k_1,k_2,\ldots,k_n$ sedemikian sehingga $$\begin{aligned} \textbf{q} &= k_1\textcolor{blue}{\textbf{u}_1}+k_2\textbf{u}_2+\ldots+k_n\textbf{u}_n \\ &= k_1\textcolor{blue}{l_2\textbf{u}_2+l_3\textbf{u}_3+\ldots+l_n\textbf{u}_n}+k_2\textbf{u}_2+\ldots+k_n\textbf{u}_n \\ &= k_1l_2+k_2\textbf{u}_2+k_1l_3+k_3\textbf{u}_3+\ldots+k_1l_n+k_n\textbf{u}_n \end{aligned}$$ Artinya, $\textbf{q}$ adalah kombinasi linear dari vektor-vektor $\textbf{u}_2,\ldots,\textbf{u}_n$. Dengan demikian, himpunan $S'$ juga merentang $V$. 3Misalkan adalah ruang vektor dan adalah himpunan vektor dalam . Buktikan bahwa adalah subruang .PembahasanHimpunan $V$ bersifat tertutup terhadap operasi penjumlahan vektor dan perkalian skalar, sehingga $\text{span}S$ adalah subset dari $V$. Selain itu, vektor nol adalah kombinasi linear dari vektor-vektor dalam $S$, sehingga $\text{span}S$ bukan himpunan kosong. Misalkan $k$ adalah skalar dan $\textbf{v},\textbf{w} \in \text{span}S$ dengan $$\begin{aligned} \textbf{v} &= l_1\textbf{u}_1+l_2\textbf{u}_2+\ldots+l_n\textbf{u}_n \\ \textbf{w} &= m_1\textbf{u}_1+m_2\textbf{u}_2+\ldots+m_n\textbf{u}_n \end{aligned}$$ Untuk membuktikan $\text{span}S$ subruang dari $V$, perlu ditunjukkan $\textbf{v}+k\textbf{w} \in \text{span}S$. Perhatikan bahwa $$\begin{aligned} \textbf{v}+k\textbf{w} &= l_1\textbf{u}_1+l_2\textbf{u}_2+\ldots+l_n\textbf{u}_n+km_1\textbf{u}_1+m_2\textbf{u}_2+\ldots+m_n\textbf{u}_n \\ &= l_1\textbf{u}_1+l_2\textbf{u}_2+\ldots+l_n\textbf{u}_n+km_1\textbf{u}_1+km_2\textbf{u}_2+\ldots+km_n\textbf{u}_n \\ &= l_1+km_1\textbf{u}_1+l_2+km_2\textbf{u}_2+\ldots+l_n+km_n\textbf{u}_n \end{aligned}$$ Akibatnya $\textbf{v}+k\textbf{w} \in \text{span}S$. Dengan demikian, $\text{span}S$ adalah subruang vektor dari $V$. 4Misalkan adalah ruang vektor dan adalah himpunan vektor dalam . Buktikan bahwa .PembahasanMisalkan $\textbf{u}_r \in S$. Untuk membuktikan $S \subseteq \text{span}S$, perlu ditunjukkan $\textbf{u}_r \in \text{span}S$. Perhatikan bahwa $$\textbf{u}_r = 0\textbf{u}_1+0\textbf{u}_2+\ldots+1\textbf{u}_r+\ldots+0\textbf{u}_n$$ sehingga $\textbf{u}_r \in \text{span}S$. Dengan demikian, $S \subseteq \text{span}S$. 5Misalkan adalah ruang vektor dan adalah himpunan vektor dalam . Jika adalah subruang yang memuat , maka buktikan bahwa .PembahasanMisalkan $\textbf{t} \in \text{span}S$, sehingga $$\textbf{t}=k_1\textbf{u}_1+k_2\textbf{u}_2+\ldots+k_n\textbf{u}_n$$ untuk suatu skalar $k_1,k_2,\ldots,k_n$. Diketahui $S \subseteq W$, sehingga $\textbf{u}_1,\textbf{u}_2,\ldots,\textbf{u}_n \in W$. Karena $W$ subgrup, maka aksioma 1 dan 6 berlaku, sehingga $$k_1\textbf{u}_1+k_2\textbf{u}_2+\ldots+k_n\textbf{u}_n = \textbf{t} \in W$$ Dengan demikian, $\text{span}S \subseteq W$. 6Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $\textbf{w}=a_1,a_2,a_3 \in \mathbb{R}^3$. Perhatikan bahwa $$\begin{aligned} \textbf{w} &= a_1,a_2,a_3 \\ &= a_1,0,0+0,a_2,0+0,0,a_3 \\ &= a_11,0,0+a_20,1,0+a_30,0,1 \\ &= a_1 \textbf{u}_1+a_2 \textbf{u}_2 + a_3 \textbf{u}_3 \end{aligned}$$ Dengan demikian, himpunan $S$ merentang $\mathbb{R}^3$.Nomor 7Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $\textbf{w}=a,b,c \in \mathbb{R}^3$. Perlu diperiksa, apakah terdapat skalar $p,q,r$ sedemikian sehingga $\textbf{w}=p\textbf{u}_1 + q\textbf{u}_2 + r\textbf{u}_3$. Perhatikan bahwa $$\begin{aligned} a,b,c &= p2,2,2 + q0,0,3 + r0,1,1 \\ &= 2p,2p,2p + 0,0,3q + 0,r,r \\ &= 2p,2p+r,2p+3q+r \end{aligned}$$ Dari persamaan di atas, diperoleh $$\left\{\begin{alignat*}{3} 2p&\\&&\\& \=\ &a \\ 2p&\\&&\+\&r \=\ &b \\ 2p&\+\&3q&\+\&r \=\ &c \end{alignat*}\right.$$ Dari persamaan pertama diperoleh $p=a/2$. Substitusi nilai $p$ pada persamaan kedua, untuk memperoleh nilai $r=b-a$. Terakhir, substitusi nilai $p$ dan $r$ pada persamaan ketiga, untuk memperoleh nilai $q=c-b/3$. Jadi, sistem persamaan di atas mempunyai solusi $$p=\frac{a}{2}, \ q=\frac{c-b}{3}, \ r=b-a$$ Dengan demikian, himpunan $S$ merentang $\mathbb{R}^3$.Nomor 8Misalkan dengan Gunakan Teorema 1 untuk menunjukkan bahwa himpunan merentang .PembahasanMisalkan $W=\{\textbf{e}_1,\textbf{e}_2,\textbf{e}_3\}$ dengan $$\textbf{e}_1=1,0,0,\\textbf{e}_2=0,1,0,\\textbf{e}_3=0,0,1$$ Kita tahu bahwa himpunan $W$ merentang $\mathbb{R}^3$. Karena $\textbf{u}_1,\textbf{u}_2,\textbf{u}_3 \in \mathbb{R}^3$, maka ketiganya dapat ditulis sebagai kombinasi linear dari vektor-vektor dalam $W$. Berikutnya, tinggal ditunjukkan bahwa $\textbf{e}_1,\textbf{e}_2,\textbf{e}_3$ dapat ditulis sebagai kombinasi linear dari vektor-vektor dalam $S$. Perhatikan bahwa $$\begin{aligned} \textbf{e}_3 &= \frac{1}{3} \textbf{u}_2 \\ \textbf{e}_2 &= \textbf{u}_3-\frac{1}{3} \textbf{u}_2 \\ \textbf{e}_1 &= \frac{1}{2} \textbf{u}_1-\textbf{u}_3 \end{aligned}$$ Berdasarkan Teorema 1, diperoleh $$\text{span}S=\text{span}W=\mathbb{R}^3$$ Dengan demikian, himpunan $S$ merentang $\mathbb{R}^3$. 9Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $\textbf{w}=a,b,c \in \mathbb{R}^3$. Perlu diperiksa, apakah terdapat skalar $p,q,r$ sedemikian sehingga $\textbf{w}=p\textbf{u}_1 + q\textbf{u}_2 + r\textbf{u}_3$. Perhatikan bahwa $$\begin{aligned} a,b,c &= p1,1,1 + q1,2,3 + r1,5,8 \\ &= p+q+r,p+2q+5r,p+3q+8r \end{aligned}$$ Dari persamaan di atas, diperoleh $$\left\{\begin{alignat*}{3} p&\+\&q&\+\&r \=\ &a \\ p&\+\&2q&\+\&5r \=\ &b \\ p&\+\&3q&\+\&8r \=\ &c \end{alignat*}\right.$$ Sistem persamaan ini mempunyai matriks koefisien $$A=\begin{bmatrix}1&1&1\\1&2&5\\1&3&8\end{bmatrix}$$ Karena $\text{det}A=-1\neq0$ periksa!, maka sistem persamaan di atas konsisten untuk setiap $a,b,c \in \mathbb{R}^3$. Dengan demikian, himpunan $S$ merentang $\mathbb{R}^3$.Nomor 10Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $\textbf{w}=a,b,c \in \mathbb{R}^3$. Perlu diperiksa, apakah terdapat skalar $p,q,r$ sedemikian sehingga $\textbf{w}=p\textbf{u}_1 + q\textbf{u}_2 + r\textbf{u}_3$. Perhatikan bahwa $$\begin{aligned} a,b,c &= p2,-1,3 + q4,1,2 + r8,-1,8 \\ &= 2p+4q+8r,-p+q-r,3p+2q+8r \end{aligned}$$ Dari persamaan di atas, diperoleh $$\left\{\begin{alignat*}{3} 2p&\+\&4q&\+\&8r \=\ &a \\ -p&\+\&q&\-\&r \=\ &b \\ 3p&\+\&2q&\+\&8r \=\ &c \end{alignat*}\right.$$ Sistem persamaan ini mempunyai matriks koefisien $$A=\begin{bmatrix}2&4&8\\-1&1&-1\\3&2&8\end{bmatrix}$$ Karena $\text{det}A=0$ periksa!, maka dapat disimpulkan bahwa himpunan $S$ tidak merentang $\mathbb{R}^3$.Nomor 11Misalkan Tentukan syarat yang harus dipenuhi oleh sehingga berada dalam .PembahasanMisalkan $\textbf{w} = a,b,c \in \text{span}\{\textbf{u}_1,\textbf{u}_2,\textbf{u}_3\}$, sehingga terdapat skalar $p,q,r$ yang memenuhi $$\begin{aligned} \textbf{w} &= p\textbf{u}_1 + q\textbf{u}_2 + r\textbf{u}_3 \\ a,b,c &= p1,2,0 + q-1,1,2 + r3,0,-4 \\ &= p-q+3r,2p+q,2q-4r \end{aligned}$$ Dari persamaan di atas, diperoleh $$\left\{\begin{alignat*}{3} p&\-\&q&\+\&3r \=\ &a \\ 2p&\+\&q&\\& \=\ &b \\ &\\&2q&\-\&4r \=\ &c \end{alignat*}\right.$$ Matriks yang diperbesar dari sistem persamaan ini adalah $$\begin{bmatrix}1&-1&3&a\\2&1&0&b\\0&2&-4&c\end{bmatrix}$$ dengan bentuk eselon baris $$\begin{bmatrix}1&-1&3&a\\0&1&-2&\frac{-2a+b}{3}\\0&0&0&\frac{-2a+b}{3}-\frac{c}{2}\end{bmatrix}$$ Karena $\textbf{w} \in \text{span}\{\textbf{u}_1,\textbf{u}_2,\textbf{u}_3\}$, maka sistem persamaan di atas harus konsisten. Dan ini terjadi, jika $$\frac{-2a+b}{3}-\frac{c}{2}=0 \quad \Longrightarrow \quad -4a+2b-3c=0$$ Jadi, syarat yang harus dipenuhi oleh $a,b,c$ adalah $-4a+2b-3c=0$.Nomor 12Misalkan dan Gunakan Teorema 1, untuk menunjukkan bahwa .PembahasanPertama, kita akan menunjukkan bahwa $\textbf{u}_1,\textbf{u}_2,\textbf{u}_3$ dapat ditulis sebagai kombinasi linear dari $\textbf{w}_1,\textbf{w}_2$. Hal ini dapat dilakukan dengan inspeksi, karena komponen pertama dari $\textbf{w}_2$ adalah $0$. $$\begin{aligned} \textbf{u}_1 &= \textbf{w}_1+\textbf{w}_2 \\ \textbf{u}_2 &= 2\textbf{w}_1+\textbf{w}_2 \\ \textbf{u}_3 &= -\textbf{w}_1 \end{aligned}$$ Berikutnya, kita akan menunjukkan bahwa $\textbf{w}_1,\textbf{w}_2$ dapat ditulis sebagai kombinasi linear dari $\textbf{u}_1,\textbf{u}_2,\textbf{u}_3$. Perhatikan bahwa $$\begin{aligned} \textbf{w}_1 &= -\textbf{u}_3 \\ \textbf{w}_2 &= \textbf{u}_1+\textbf{u}_3 \end{aligned}$$ Berdasarkan Teorema 1, dapat disimpulkan bahwa $$\text{span}\{\textbf{u}_1,\textbf{u}_2,\textbf{u}_3\}=\text{span}\{\textbf{w}_1,\textbf{w}_2\}$$ 13Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $\textbf{q}=a+bx+cx^2 \in P_2$. Perhatikan bahwa $$\begin{aligned} \textbf{q} &= a+bx+cx^2 \\ &= a \cdot 1 + b \cdot x + c \cdot x^2 \\ &= a \textbf{p}_1+b \textbf{p}_2 + c \textbf{p}_3 \end{aligned}$$ Dengan demikian, himpunan $S$ merentang $P_2$.Nomor 14Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $\textbf{w}=a+bx+cx^2 \in P_2$. Perlu diperiksa, apakah terdapat skalar $k_1,k_2,k_3$ sedemikian sehingga $\textbf{w}=k_1\textbf{p}_1 + k_2\textbf{p}_2 + k_3\textbf{p}_3$. Perhatikan bahwa $$\begin{aligned} a+bx+cx^2 &= k_1x^2+1 + k_2x^2+x + k_3x+1 \\ &= k_1+k_3 + k_2+k_3x + k_1+k_2x^2 \end{aligned}$$ Dari persamaan di atas, diperoleh $$\left\{\begin{alignat*}{3} k_1&\\&&\+\&k_3 \=\ &a \\ &\\&k_2&\+\&k_3 \=\ &b \\ k_1&\+\&k_2&\\& \=\ &c \end{alignat*}\right.$$ Sistem persamaan ini mempunyai matriks koefisien $$A=\begin{bmatrix}1&0&1\\0&1&1\\1&1&0\end{bmatrix}$$ Karena $\text{det}A=-2\neq0$ periksa!, maka sistem persamaan di atas konsisten untuk setiap $a+bx+cx^2 \in P_2$. Dengan demikian, himpunan $S$ merentang $P_2$.Nomor 15Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $\textbf{w}=a+bx+cx^2 \in P_2$. Perlu diperiksa, apakah terdapat skalar $k_1,k_2,k_3,k_4$ sedemikian sehingga $\textbf{w}=k_1\textbf{p}_1 + k_2\textbf{p}_2 + k_3\textbf{p}_3+k_4\textbf{p}_4$. Perhatikan bahwa $$\begin{aligned} a+bx+cx^2 &= k_11-x+2x^2 + k_23+x + k_35-x+4x^2 + k_4-2-2x+2x^2 \\ &= k_1+3k_2+5k_3-2k_4 + -k_1+k_2-k_3-2k_4x + 2k_1+4k_3+2k_4x^2 \end{aligned}$$ Dari persamaan di atas, diperoleh $$\left\{\begin{alignat*}{4} k_1&\+\&3k_2&\+\&5k_3&\-\&2k_4 \=\ &a \\ -k_1&\+\&k_2&\-\&k_3&\-\&2k_4 \=\ &b \\ 2k_1&\\&&\+\&4k_3&\+\&2k_4 \=\ &c \end{alignat*}\right.$$ Matriks yang diperbesar dari sistem persamaan ini adalah $$A=\begin{bmatrix} 1&3&5&-2&a\\ -1&1&-1&-2&b\\ 2&0&4&2&c \end{bmatrix}$$ dengan bentuk eselon baris $$A=\begin{bmatrix} 1&3&5&-2&a\\ 0&1&1&-1&\frac{a+b}{4}\\ 0&0&0&0&-\frac{a}{2}+\frac{3b}{2}+c \end{bmatrix}$$ Sistem persamaan ini konsisten, hanya jika $$-\frac{a}{2}+\frac{3b}{2}+c=0$$ Dengan demikian, himpunan $S$ tidak merentang $P_2$.Nomor 16Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $A \in M_{2\times 2}\mathbb{R}$, dengan $$A=\begin{bmatrix}a_1&a_2\\a_3&a_4\end{bmatrix}$$ untuk suatu $a_1,a_2,a_3,a_4 \in \mathbb{R}$. Perhatikan bahwa $$\begin{aligned} A &= \begin{bmatrix}a_1&a_2\\a_3&a_4\end{bmatrix} \\[5pt] &= \begin{bmatrix}a_1&0\\0&0\end{bmatrix}+\begin{bmatrix}0&a_2\\0&0\end{bmatrix}+\begin{bmatrix}0&0\\a_3&0\end{bmatrix}+\begin{bmatrix}0&0\\0&a_4\end{bmatrix} \\[5pt] &= a_1\begin{bmatrix}1&0\\0&0\end{bmatrix}+a_2\begin{bmatrix}0&1\\0&0\end{bmatrix}+a_3\begin{bmatrix}0&0\\1&0\end{bmatrix}+a_4\begin{bmatrix}0&0\\0&1\end{bmatrix} \\[5pt] &= a_1E_1 + a_2E_2 + a_3E_3 + a_4E_4 \end{aligned}$$ Dengan demikian, himpunan $S$ merentang $M_{2 \times 2}\mathbb{R}$.Nomor 17Misalkan dengan Periksa apakah himpunan merentang .PembahasanDiambil sebarang $P \in M_{2 \times 2}\mathbb{R}$, dengan $$P=\begin{bmatrix}p_1&p_2\\p_3&p_4\end{bmatrix}$$ untuk suatu $p_1,p_2,p_3,p_4 \in \mathbb{R}$. Perlu diperiksa, apakah terdapat skalar $k_1,k_2,k_3,k_4$ sedemikian sehingga $P=k_1A+k_2B+k_3C+k_4D$. Perhatikan bahwa $$\begin{aligned} \begin{bmatrix}p_1&p_2\\p_3&p_4\end{bmatrix} &= k_1\begin{bmatrix}1&0\\0&0\end{bmatrix} + k_2\begin{bmatrix}1&1\\0&0\end{bmatrix} + k_3\begin{bmatrix}1&1\\1&0\end{bmatrix} + k_4\begin{bmatrix}1&0\\1&1\end{bmatrix} \\[5pt] &= \begin{bmatrix}k_1+k_2+k_3+k_4&k_2+k_3\\k_3+k_4&k_4\end{bmatrix} \end{aligned}$$ Dari persamaan di atas, diperoleh $$\left\{\begin{alignat*}{4} k_1&\+\&k_2&\+\&k_3&\-\&k_4 \=\ &p_1 \\ &\\&k_2&\+\&k_3&\\& \=\ &p_2 \\ &\\&&\\&k_3&\+\&k_4 \=\ &p_3 \\ &\\&&\\&&\\&k_4 \=\ &p_4 \end{alignat*}\right.$$ Melalui substitusi balik, diperoleh solusi $$\begin{aligned} k_1 &= p_1-p_2-p_4 \\ k_2 &= p_2-p_3+p_4 \\ k_3 &= p_3-p_4 \\ k_4 &= p_4 \end{aligned}$$ Dengan demikian, himpunan $S$ merentang $M_{2 \times 2}\mathbb{R}$.
- Bagaimana cara menentukan resultan dan selisih suatu vektor? Berikut telah dirangkum dan dibahas dengan mudah sebagai berikut Dua buah vektor satu sama lain membentuk sudut 60°. Besar kedua vektor tersebut sama yakni 5 satuan. Tentukanlah resultan dan selisih kedua vektor! DiketahuiSudut yang dibentuk dari dua vektor θ = 60°Besar vektor F1 = 5Besar vektor F2 = 5 Ditanyakan Resultan F1+F2 dan selisih kedua vektor F1-F2Baca juga Contoh Soal Menghitung Resultan Vektor Penyelesaian Resultan vektor F1+F2 = √[F1² + F2² + 2F1F2 cosθ]F1+F2 = √[5² + 5² + 255 cos60]F1+F2 = √[25 + 25 + 501/2]F1+F2 = √[50+ 25]F1+F2 = √75F1+F2 = 5√3 Selisih vektor F1-F2 = √[F1² + F2² - 2F1F2 cosθ]F1-F2 = √[5² + 5² - 255 cos60]F1-F2 = √[25 + 25 - 501/2]F1-F2 = √[50- 25]F1-F2 = √25F1-F2 = 5 Sumber Fauziyyah] Editor [Rigel Raimarda] Dapatkan update berita pilihan dan breaking news setiap hari dari Mari bergabung di Grup Telegram " News Update", caranya klik link kemudian join. Anda harus install aplikasi Telegram terlebih dulu di ponsel.
Vektor posisi dari titik dan adalah sebagai berikut. Vektor dapat ditentukan sebagai berikut. Panjang vektor dapat ditentukan sebagai berikut. Misalkan vektor satuan dari vektor adalah vektor . Dengan menerapkan rumus vektor satuan, diperoleh Jadi, vektor satuan dari vektor adalah .
tentukan vektor yang sama dari vektor vektor berikut